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Reflection Grating Spectrometer

(J. Grady, Goddard Space Flight Center)
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Reflection Grating Spectrometer

• Flatness < 1.0 µm over 200 mm
• Roughness < 0.5 nm
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Process for Silicon Blazed Grating
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200 nm Si Master with 7º Blaze

• Roughness < 0.2 nm
• Rounding = AFM artifact
• Radius of probe ~ 10 nm

Coated with Cr and Au

Atomic Force Micrograph (AFM) Scanning Electron Micrograph (SEM)

100

AFM probe

Actual profile

Scanned profile

Silicon Master
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Replication: Nanoimprint Lithograpy
UV-cure

UV-transparent substrate

FOTS (Tridecafluoro-1,2,2,2-Tetrahydrooctyltrichlorosilane)

Thermal-cure
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Thermal-imprint 7º Blazed Grating
• Imprinted area =

100 mm wafer
• Roughness < 0.2 nm
• Rounding = AFM artifact
• Trenches present

(Gratings imprinted at Nanonex, Corp.)
AFM

SEM
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UV-imprint 7º Blazed Grating

• Imprinted area =
100 mm wafer

• Roughness < 0.2 nm
• Rounding = AFM 
artifact

(Gratings imprinted at Nanonex, Corp.)AFM
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Replication Induced Distortion

• Stoney’s equation for thin film:

• Optic flatness < 500 nm over 100 mm
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Shack-Hartmann Metrology Tool
Wafer

C. R. Forest et al., Opt. Eng., 43 (3), 742 (2004)
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Zernike Polynomials
• Any waveform can be represented as linear 

combinations of Zernike polynomials
• Series of complete, orthogonal polynomials 

over unit circle
• Defined as,

• Where,

• Used to describe modes of wavefront
aberration
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Zernike Polynomial Decomposition

2 cos 2ρ θAstigmatism:

22 0.5Z =

( )33 2 cosρ ρ θ−Coma:
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4 26 6 1ρ ρ− +Spherical:

42 1Z =

Arbitrary wavefront
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Z21 Coefficient
• With Stoney’s equation, 

• Distortion changes Z21 only
• The U21 polynomial is,

• Radius of curvature for U21,
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Wafer Before and After Thermal-NIL

• Silicon wafer • Polymer average thickness ~ 85 nm
Before After

Zernike 
Coefficients (µm) Z20 Z21 Z22 Z30 Z31 Z32 Z33

Before 0.120 -1.407 0.023 0.151 -0.261 -0.648 0.057

After 0.032 -1.390 0.069 0.162 -0.234 -0.659 0.078

∆ Z21 = 17 nm repeatability ~ 35 nm
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Wafer Before and After UV-NIL
• Fused silica wafer • Polymer average thickness ~ 285 nm

Before After

Zernike 
Coefficients (µm) Z20 Z21 Z22 Z30 Z31 Z32 Z33

Before -0.031 -6.234 -0.209 0.087 -0.486 -0.307 -0.004

After -0.029 -6.262 -0.163 0.070 -0.355 -0.641 0.002

∆ Z21 = -28 nm repeatability ~ 35 nm



SNLSNL MITMIT

Preliminary X-ray Diffraction Efficiency

(Testing conducted at National Synchrotron Light Source of Brookhaven National Laboratory, simulation by International Intellectual Group, Inc)
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Foil Optic Deformation

ρ

• Gravity sag 

• Thermal expansion 
mismatch between foil 
and constraint device

• Friction from physical 
manipulation (i.e., 
assembly)
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Gravity Sag 4
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Friction Effects
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Thin Optic Metrology Truss

z

x y

Double-sided 
flexures (3)

Vertical tilt stage

Reference block

Silicon wafer

Antenna 
flexures (4)

Horizontal 
tilt stage
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Monolithic Flexures
Double-sided flexures Antenna flexures
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Double-Sided Flexure Design

Optic insertion/removal

Vertical 
arm

Point of 
actuationOpposing 

arms

Thin optic

Point of 
actuation

Vertical arm
• Allow for optic insertion/removal

• Provide preload
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Opposing arms 
• Accommodate thermal expansion up to 1°C per measurement

• Manufactured using wire electric-discharge-machining of 
stress-relieved aluminum

Double-Sided Flexure Design

Thermal 
load

Opposing 
arms

Thermal expansion compensation Opposing arm 
misalignment errors

Thin optic
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Load Carrying Flexure Design

Reduce friction-induced warp

Carry the load of optics up to 1.6 mm thick

Sapphire tube 
to facilitate 
optic 
placement

Cylindrical 
flexure
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Performance Evaluation

Metrology Truss repeatability (thin optic placed, 
removed and placed again) is 55 nm P-V
(Shack-Hartmann metrology tool repeatability is 36 nm)
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Conclusion
• Replicated 200 nm-period blaze gratings with 

thermal-cure and UV-cure process
• Extremely low out-of-plane distortion < 40 nm
• Thermally-imprinted grating has excellent  

diffraction efficiency, max ~43%
• Developed metrology truss to constrain thin 

optics
• 55 nm repeatability
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Thermal expansion
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Thermal Lengths
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Double-Sided Flexure Performance

Temperature variation of 1.2°C during 3 hrs

Maximum deformation 92.5 nm



SNLSNL MITMIT

Double-Sided Flexures
Design Analysis

Wire EDM-ed, Monolithic 
flexures

42 mm

ϕ = 2 mm ruby 
balls

0.8 mm

6.75 mm
0.6 
mm

21 mm

2 mm

1. Vertical flexures

Allow for optic insertion/removal

Provide preload

(klateral = 2.45E-4 N/µm)

2. Horizontal flexures

Accommodate for thermal 
expansion

(klateral = 0.024 N/µm)

Material Aluminum 6061 T651
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Monolithic Flexure Errors
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Errors Induced by Antennas
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Vertical Reference Flat
• Front surface flatness: 0.1um

– Optically polished Nickel coated 
Aluminum block

– 90 deg Angle +/- 1 arcsec
• Base has tilt adjustment

– Resolution: 2 µrad
• Inclinometer resolution: 14 arcsec
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Flexure Tilt Stage Design

• Allows for pitch / yaw 
adjustments (2 ± 0.0005°)

• Actuation Mechanism:
– Fine-thread (#¼-100) screws

• Preload Mechanism:

– Springs 
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Preliminary Experiments
Autocollimator Experiments:

• Flexure tilt stage:   
achieves desired range & 
accuracy (2 µrad)

• Repeatability
Pitch: 1.2 µrad
Yaw:  11 µrad
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